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Abstract: The paper proposes a model that relieves the characteristics of several complex 

systems having a similar scale free network architecture. The properties of this kind of 

networks are compared with those of other methods which are specific for studying 

complex systems: nonlinear dynamics and statistical methods. We place particular 

emphasis on scale free network theory and its importance in augmenting the framework 

for the quantitative study of complex systems, by discussing three important applications: 

Internet topology and traffic characteristics, epidemics broadcast and cellular 

communication system in biological networks (in particular in Sepsis).  Finally the new 

ways in modeling complex systems with scale-free networks are discussed.  

. 
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1. INTRODUCTION 

 

Let start with some ideas for a definition of 

complexity, or more exactly of a complex system. 

We expect that its definition should be richer than 

that of algorithmic complexity, and should express 

the level of interconnectedness and 

interdependencies of a system, not just the 

instruction set for creating the system -the amount of 

effort it takes to use those instructions must 

addressed as well. In a complex system it is often the 

case that the utility of a structure or process is 

expressed at the next higher level of organization 

relative to the process itself. Unlike entropy and the 

related concept of information, complexity is not 

extensive, nor is it entirely intensive. What is clear 

though is that complexity concerns a specific 

description, which is of course dependent on the 

technology and subjective capabilities of the 

observer. Anyway, we can consider that a complex 

system is a system with a large number of elements, 

building blocks or agents, capable of interacting with 

each other and with their environment. The 

interaction between elements may occur only with 

immediate neighbors or with distant ones; the agents 

can be all identical or different; they may move in 

space or occupy fixed positions, and can be in one of 

two states or of multiple states. The common 

characteristic of all complex systems is that they 

display organization without any external organizing 

principle being applied. 

 

Another problem is how to measure the complexity. 

The first and still classic measure of complexity is 

that introduced by Kolmogorov, which is (roughly) 

the shortest computer program capable of generating 

a given string. This quantity is in general 

uncomptable, in the sense that there is simply no 

algorithm which will compute it. Moreover, the 

Kolmogorov complexity is maximized by random 

strings, so it's really telling us what's random, not 

what's complicated, and it's gradually come to be 

called the "algorithmic information." Let also remind 

that Bennett proposed a measure for the computing 

complexity, which he called the logical depth of a 

system [1]. The basic idea is that a system should be 

called complex, or logically deep, if that system can 

be generated by a few simple rules, but those rules 

require a long time to run. So, for example, a human 

body is complex in that it is specified by a relatively 



     

small amount of information encoded in DNA, but it 

takes a great deal of processing to get from that DNA 

to the human body. 

 

So, if we can not define exactly the complexity and 

also we can not measure its dimensions, let try to 

model – if not complexity, at least the complex 

systems. Because we met more and more example of 

complex systems: physical, mechanical, biological, 

social. The stock market, cities, metabolic pathways, 

ecosystems, the Internet or the human brain, are all 

complex. We can ask what do have in common all 

these systems. In the last few years the answer that 

has emerged is that they all share similar network 

architectures. Network theory has become one of the 

most visible pieces of the body of knowledge that 

can be applied to the description, analysis, and 

understanding of complex systems and is now an 

essential ingredient their study. But it is not the only 

solution. Actually, as will be shown in the next 

section, network theory competes with other two 

complex systems modeling methods. 

 

2. TOOLS FOR MODELING COMPLEX 

SYSTEMS 

 

Remote In a rough sense, the current toolbox used in 

tackling complex systems involves three main areas: 

(i) nonlinear dynamics and chaos, (ii) statistical 

physics, including discrete models, and (iii) network 

theory. 

 

2.1 Nonlinear dynamics and chaos 

 

Nonlinear dynamics and chaos in deterministic 

systems are now an integral part of science and 

engineering. The theoretical foundations are well 

agreed upon mathematical definitions of chaos, many 

of them formally equivalent. However, because of its 

relative novelty and, in much case, counterintuitive 

nature, there are still many misconceptions about 

chaos and its implications. Extreme sensitivity to 

initial conditions does not mean that prediction is 

impossible. Memory of initial conditions is lost 

within attractors but the attractor itself may be 

extremely robust. In particular chaotic does not mean 

unstable. Chaos means that simple systems are 

capable of producing complex outputs. Many 

techniques have been developed to analyze signals 

and to determine if fluctuations stem from 

deterministic components. There are numerous 

applications in geophysics, physiology and 

neurophysiology [2].  

 

2.2 Statistical physics: Universality and scaling 

 

Statistical physics brought three very important 

conceptual and technical advances: 1. It lead to a 

new conception of prediction; 2. It circumvented 

classical mechanics and it casted solutions in terms 

of ensembles; 3. It introduced the concept of discrete 

models, ranging from the cellular automata to agent-

based models.  In the 1970s, fundamental advances 

occurred in our understanding of phase transitions 

and critical phenomena leading to the development 

of two important new concepts: universality and 

scaling [3]. The finding, in physical systems, of 

universal properties that are independent of the 

specific form of the interactions gives rise to the 

intriguing hypothesis that universal laws or results 

may also be present in complex social, economic and 

biological systems. The scaling hypothesis which 

arose in the context of the study of critical 

phenomena led to two categories of predictions, both 

of which have been remarkably well verified by a 

wealth of experimental data on diverse systems. The 

first category is a set of relations, called scaling laws 

that serve to relate the various critical-point 

exponents characterizing the singular behavior of the 

order parameter and of response functions. The 

second category is data collapsing. Another 

fundamental concept arising from the study of 

critical phenomena is universality. For systems in the 

same universality class, exponents and scaling 

functions are the same in the vicinity of the critical 

point. This fact suggests than when studying a given 

problem, one may pick the most tractable system to 

study and the results one obtains will hold for all 

other systems in the same universality class. Fractal 

analysis seems to be one of the most promising tools.  

 

In what concern discrete models the main 

assumption in that some phenomena can and should 

be modeled directly in terms of computer programs 

(algorithms) rather than in terms of equations. 

Cellular automata are the simplest example of 

discrete time and space models that were developed 

with the computer in mind. Examples of the 

application of cellular automata exist in physical, 

chemical, biological and social sciences; they can be 

as simple as elementary predator-prey models 

between a handful of species and as complex as the 

evolution of artificial societies. Discrete, or agent-

based, modeling has been extremely successful 

because of the intuition-building capabilities it 

provides and the speed with which it permits the 

investigation of multiple scenarios. For this reason 

discrete modeling has led in some cases to a 

replacement of equation based approaches in 

disciplines such as ecology, traffic optimization, 

supply networks, and behavior-based economics. 

 

2.3 Networks 

 

The third element in the toolbox is networks. A 

network is a system of nodes with connecting links. 

Once one adopts this viewpoint, networks appear 

everywhere. Consider some examples from two main 

fields: a) biological networks:  autonomous nervous 

systems of complex organisms, a network of neurons 

connected by synapses, gene regulation networks, a 

network of genes connected by cross-regulation 

interactions or metabolic networks, a network of 

metabolites connected by chemical reactions, b) 



     

social networks,  like  e-mails services,  Internet and 

the World Wide Web. The structure of such social 

networks was formalized exactly by using random 

graphs, in which the existence of a link between any 

pair of nodes has probability p. Erdos, in 

collaboration with Renyi, pursued the theoretical 

analysis of the properties of random graphs obtaining 

a number of important results, including the 

identification of the percolation threshold, that is, the 

average number of links per node necessary in order 

for a random graph to be fully connected, or the 

typical number of intermediate links in the shortest 

path between any two nodes in the graph. Another 

important class of network is represented by the 

Small-world networks, that have as main 

characteristic the so-called small-world phenomenon, 

which is defined by the co-existence of two 

apparently incompatible conditions, (i) the number of 

intermediaries between any pair of nodes in the 

network is quite small - typically referred to as the 

six-degrees of separation phenomenon and (ii) the 

large local redundancy of the network, i.e., the large 

overlap of the circles of neighbors of two network 

neighbors. The latter property is typical of ordered 

lattices, while the former is typical of random 

graphs. Recently, Watts and Strogatz [4] proposed a 

minimal model for the emergence of the small-world 

phenomenon in simple networks. In their model, 

small-world networks emerge as the result of 

randomly rewiring a fraction p of the links in a d-

dimensional lattice (Fig. 1). The parameter p enables 

one to continuously interpolate between the two 

limiting cases of a regular lattice (p = 0) and a 

random graph (p = 1). 

 

Fig.1.   Small-world networks model generation 

 

Watts and Strogatz probed the structure of their 

small-world network model via two quantities: (i) the 

mean shortest distance L between all pairs of nodes 

in the network, and (ii) the mean clustering 

coefficient C of the nodes in the network. For a d-

dimensional lattice one has L ~N
1/d 

and C = O(1), 

where N is the number of nodes in the network; for a 

random graph one has L ~lnN and C ~ 1/N. 

 

 

3. SCALE-FREE NETWORKS 

 

An important characteristic of a graph that is not 

taken into consideration in the small-world model of 

Watts and Strogatz is the degree distribution, i.e., the 

distribution of number of connections of the nodes in 

the network. The Erdos-Renyi class of random 

graphs has a Poisson degree distribution,  while 

lattice-like networks have  even more strongly 

peaked distributions - a perfectly ordered lattice has 

a delta-Dirac degree distribution. Similarly, the 

small-world networks generated by the Watts and 

Strogatz model also have peaked, single-scale, 

degree distributions, i.e., one can clearly identify a 

typical degree of the nodes comprising the network. 

Against this theoretical background, Barabasi and 

coworkers found that a number of real-world 

networks have a scale-free degree distribution with 

tails that decay as a power law [5].  These networks 

were called Scale Free Networks (SFN). 

 

3.1. General SFN properties. 

 

Barabasi and Albert suggested that scale-free 

networks emerge in the context of growing network 

in which new nodes connect preferentially to the 

most connected nodes already in the network. 

Specifically, 
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 where n is the time and number of nodes added to 

the network, n0 is the number of initial nodes in the 

network at time zero, ki is the degree of node i and 

pi(n + 1) is the probability of a new node, added at 

time n+1 linking to node i. 

 

 
 

Fig.2.   A scale free  network graph 

 

As illustrated in Figure 2, as time ticks by the degree 

distribution of the nodes becomes more and more 

heterogeneous since the nodes with higher degree are 

the most likely to be the ones new nodes link to. 

Significantly, scale-free networks provide extremely 

efficient communication and navigability as one can 

easily reach any other node in the network by 

sending information through the “hubs”, the highly-

connected nodes. The efficiency of the scale-free 

topology and the existence of a simple mechanism 

leading to the emergence of this topology led many 

researchers to believe in the complete ubiquity of 

scale-free network. Note that scale-free networks are 

a subset of all small-world networks because (i) the 
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mean distance between the nodes in the network 

increases extremely slowly with the size of the 

network and (ii) the clustering coefficient is larger 

than for random networks.  

 

3.2 Diameter of scale-free networks 

 

It was shown that scale-free networks with degree 

exponent 2<λ<3 possess a diameter D ~ ln ln N, 

smaller even than that of random and small world 

networks [6]. If the network is fragmented, we will 

only be interested in the diameter of the largest 

cluster (assuming there is one). In this study we 

consider the diameter of a Molloy-Reed scale-free 

network definite as the average distance between any 

two sites on the graph. Actually, it easier still to 

focus on the radius of a graph, lL ≡  as the average 

distance of all sites from the site of highest degree in 

the network. The diameter of the graph D is 

restricted to L≤D ≤2L and thus scales like L . 

 

3.3 Minimal graphs and lower bound 

 

Cohen, et al., show that the radius of any scale-free 

graph with λ>2 has a rigorous lower bound that 

scales as ln ln N. It is easy to convince oneself that 

the smallest diameter of a graph, of a given degree 

distribution, is achieved by the following 

construction: Start with the highest degree site, then 

connect to each successive layer the extant sites of 

highest degree, until the layer is full. By construction 

loops will occur only in the last layer [7]. To bound 

the radius L of the graph, we will assume that the 

low degree sites are connected randomly to the giant 

cluster. On the other hand, if we start uncovering the 

graph from any site - provided it belongs to the giant 

component – then within a distance l2 from this site 

there are at least l2  bonds. Since l= l1+l2, all sites are 

at a distance of order ln ln N from the highest degree 

site, and L= ln ln N is a rigorous lower bound for the 

diameter of scale-free networks with λ>2. In a 

similar way one can demonstrate that the scaling of 

D ~ ln ln N is actually realized in the general case of 

random scale-free graphs with 2<λ<3. For λ>3 and 

N>>1, k is independent of N , and the radius of the 

network is L ~ ln N . 

 

 

4. USING SFN IN COMPLEX SYSTEMS 

MODELLING 

 

4.1 The topology of the Internet and the dynamics of 

Internet traffic 

 

The Internet is a prime example of a self-organizing 

complex system, having grown mostly in the absence 

of centralized control or direction. In this network, 

information is transferred in the form of packets 

from the sender to the receiver via routers, computers 

which are specialized to transfer packets to another 

router “closer” to the receiver. A router decides the 

route of the packet using only local information 

obtained from its interaction with neighboring 

routers, not by following instructions from a 

centralized server. A router stores packets in its finite 

queue and processes them sequentially. However, if 

the queue overflows due to excess demand, the 

router will discard incoming packets, a situation 

corresponding to congestion.. A number of studies 

have probed the topology of the Internet and its 

implications for traffic dynamics. It has been 

reported that Internet traffic fluctuations are 

statistically self-similar [8] and that the traffic 

displays two separate phases, congested and non-

congested. It was also shown that time series of 

number of connections are nonstationary and are 

characterized by different mean values depending on 

the observation period. Barthelemy, et al. analyzed 

data from the French national network which 

comprises 30 interconnected routers and is used by 

approximately 2 million individuals [9]. They found 

that the Internet flow is strongly localized: most of 

the traffic takes place on a spanning network 

connecting a small number of routers which can be 

classified either as “active centers,” which are 

gathering information, or “databases,” which provide 

information. A number of groups have also 

demonstrated that the Internet displays a number of 

properties that distinguishes it from random graphs: 

wiring redundancy and clustering, non-trivial 

eigenvalue spectra of the connectivity matrix and a 

scale-free degree distribution.  

Experimental evidence for self-similarity in various 

types of data network traffic is already 

overwhelming and continues to grow. So far, 

simulations and analytical studies have shown that it 

may have a considerable impact on network 

performance that could not be predicted by the 

traditional short-range-dependent models. The most 

serious consequence of self-similar traffic concerns 

the size of bursts. Within a wide range of time-

scales, the burst size is unpredictable, at least with 

traditional modeling methods.  

 

4.2 Spread of epidemics in complex networks 

 

The propagation of errors occurring on routers and 

servers that are physically linked in a large network 

is a typical example of epidemic process, in which 

the corruption (virus) is transmitted from infected to 

healthy individuals. Computer viruses are usually 

referred to as little programs that can reproduce 

themselves by infecting other programs [10]. The 

basic mechanism of infection is as follows: When the 

virus is active inside the computer, it is able to copy 

itself, by different ways, into the code of other, clean, 

programs. When the newly infected program is run 

into another computer, the code of the virus is 

executed first, becoming active and being able to 

infect other programs. Apart from reproducing 

themselves, computer viruses perform threatening 

tasks that range from flashing innocuous messages 

on the screen to seriously corrupt data stored in the 



     

computer. These deleterious effects render most 

computer viruses as dangerous as their biological 

homonyms, and explain the interest, both 

commercial and scientific, arisen around their study. 

Computer viruses can be classified into three main 

classes, or strains. The first strain includes file 

viruses that infect application programs. A second 

and more harming family contains the boot-sector 

viruses that infect the boot sector of floppy disks and 

hard drives, a portion of the disk containing a small 

program in charge of loading the operating system of 

the computer. A third and nowadays prevailing strain 

is formed by the macro viruses. These viruses are 

independent of the platform’s hardware and infect 

data files, such as documents produced with 

spreadsheets or word processors. They are coded 

using the macro instructions that are appended in the 

document, instructions used to perform a set of 

automatic actions, such as formatting the documents 

or typing long sequences of characters. In addition, 

with the ever more efficient deployment of antivirus 

software, more harmful viruses combining together 

the properties of the main strains have been 

developed. Noticeably, however, the nowadays 

dominant and most aggressive type of cyber 

organisms is represented by the worms family. 

Worms are actually viruses infecting the computer 

with mechanisms similar to usual viruses and making 

a particularly effective use of the e-mail for infecting 

new computers. In fact, by using the instructions of 

some commercial mail software applications, worms 

are capable of sending themselves to all the e-

addresses found in the address-book of the person 

receiving the infected mail. This possibility renders 

worms the most effective viruses, especially in terms 

of the velocity at which they can propagate starting 

from a single infection. 

The spreading of computer viruses has been studied 

for long years, in close analogy with the models 

developed for the study of the transmission of 

biological diseases. In this biological framework, the 

key point is the description of the epidemic process 

in terms of individuals and their interactions. In this 

simplified formalism, individuals can only exist in a 

discrete set of states, such as susceptible (or healthy), 

infected (and ready to spread the disease), immune, 

dead (or removed), etc. On the other hand, the 

interactions among individuals are schematized in 

the structure of the contacts along which the 

epidemics can propagate. Within this formalism, the 

system can be described as a network or graph, in 

which the nodes represent the individuals and the 

links are the connections along which the epidemics 

propagates. Standard epidemiological models usually 

consider homogeneous networks, which are those 

that have a connectivity distribution peaked at an 

average connectivity k , and decaying exponentially 

fast for k<< k
 
and k>> k . A typical example of 

deterministic homogeneous network is the standard 

hypercubic lattice, while among the random 

homogeneous network we can count the Erdos-Renyi 

model and the Watts-Strogatz model. On the other 

computer viruses and worms spread in environments 

characterized by scale-free connectivities. This will 

lead to the failure of the standard epidemic picture 

and will naturally introduce the scale-free 

connectivity as an essential ingredient for the 

understanding the spread of a computer virus. In a 

recent paper [11] was studied the effect of the special 

nature of scale-free distribution on the properties of 

random network models, including methods for the 

study of the layer structure of the graph, the 

percolation threshold and the critical exponents. The 

cited paper analyses also an epidemiological 

framework obtained in population networks 

characterized by a scale-free connectivity pattern. It 

was shown that SFN are very weak in face of 

infections, and its susceptibility to epidemic 

spreading is reflected also in an intrinsic difficulty in 

protecting them with uniform immunization policies. 

But targeted or selective immunization procedures 

achieve the desired lowering of epidemic outbreaks 

and prevalence. The special properties of scale-free 

networks might prove useful for applications such as 

the design of more robust networks, the 

improvement of routing algorithms and the 

prevention of an epidemic broadcast of computer or 

human viruses.  

 

4.3 Biological networks in Sepsis modeling 

 

The evolution in Sepsis can be considered as a result 

of information transfer in a complex cellular and 

even molecular communication system.  Although 

molecular biology is mainly focused on 

identification of genes and functions of their 

products, which are components of the system, the 

major challenge in analysing Sepsis is to understand 

at the system level the biological system within a 

consistent framework of knowledge built up from the 

molecular level to the functional system level – not 

only gene networks, but also protein networks, 

signaling networks, metabolic networks and specific 

systems such as the immune system.  At a very 

abstract level, a cell can be divided into two general 

subnetworks, a regulatory network and a metabolic 

network. These networks possess very different 

characteristics. The metabolic network is mainly 

occupied with substance transformation to provide 

metabolites and cellular structures. The regulatory 

network’s main task is information processing for the 

adjustment of enzyme concentrations to the 

requirements of variable internal and external 

conditions. This network involves the use of genetic 

information.  

In our approach to model intercellular 

communication in Sepsis [12], the basic network 

model consists of cell types as nodes and of 

intercellular signaling species (first messengers) 

connecting the nodes. Because communication 

between cell types occurs in an explicit direction and 

various kinds of communication might exist, the 

resulting graph is directed. The resulted model is a  



     

highly inhomogeneous scale-free network in which a 

few highly connected cells play a central role in 

mediating interactions among numerous, less 

connected cells. There will be a lot of future work to 

make this model efficient, especially by using its 

self-similarity property in order to decide only of a 

few numbers of connections. One possible function 

of this model is to activate output only if the input 

signal is persistent and to allow a rapid deactivation 

when the input goes off. Between each node pair 

multiple edges (in both directions) are possible. Also 

edge weights (at least for the name/type of the 

connection) are necessary to reflect biological 

communication in a realistic manner. Thus, we do 

not model each individual cell, but the principal 

connections between cell types. In contrast to most 

other network models investigated recently this 

intercellular network possesses connectivity 

complexity rather than node complexity. The number 

of cell types in the human body is small 

(approximately 200) and fixed. The number of edges 

in contrast is principally orders of magnitude higher 

and varies over time. So, one of the challenges for 

future work will be to deal analytically and 

explanatory with this kind of complexity. 

 

 

6. CONCLUSIONS AND FUTURE WORK 

 

The need for enhanced computational ability is most 

evident when one attempts to couple large numbers 

of individual units into highly interactive and largely 

parallel networks. The proliferation of information 

transferred in such networks introduces the need for 

these systems that provide a framework for 

classifying information, spatial statistics for 

analyzing patterns, and dynamic simulation models 

that allow the integration of information across 

multiple spatial, temporal, and organizational scales. 

It is impossible to ignore the apparent universality of 

pair interactions among the various elements of a 

complex system. Instead of chance and randomness, 

one must consider a high degree of internal order that 

governs the system organization. Each node selected 

in order to be discussed as an element in a network 

of interacting constituents, ensures to spot and 

quantify the interplay between behavior, structure 

and function. It can be approached from the bottom 

up, moving from cells to modules, or from the top to 

the bottom, starting from the network’s scale-free 

and hierarchical nature and moving to the specific 

modules. In either case, it must be acknowledged 

that structure, topology, network usage, robustness 

and function are deeply interlinked.  The edge 

complexity could be reduced in different respects.. 

For instance a clustering of a network derived from 

the connectivity distribution of the nodes might show 

sub-networks of intense communication or the 

impact of distinct nodes for the whole system. Also 

the validation of the biological or physical 

plausibility of scale free networks reconstructed from 

databases is of major importance. Network 

modeling, quantitative analysis and laboratory 

experiments have to be combined in various ways to 

gain new insights. 
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